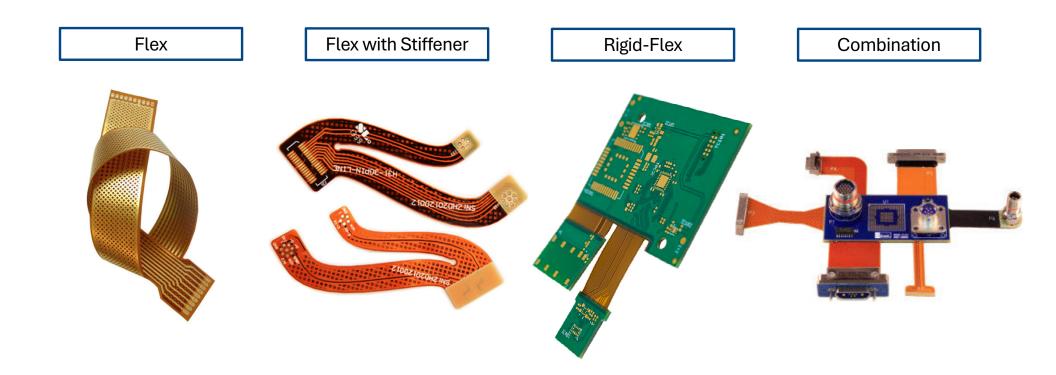


Flex in Focus

Designing the Perfect Stackup for Flex

Lauren Waslick – Newgrange Design Shannon Henry – EMA Design Automation 11/7/2024

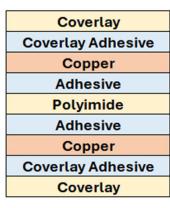

EMA Design Automation[•]

Agenda

- Types of Flex Boards
- Stack-up Overview
 - Flex
 - Flex with Stiffener
 - Rigid-Flex
 - Combination
 - Material Selection
- Considerations throughout the design process:
 - Deliverables
 - Fabrication Drawing
- Early Flex Fabricator Involvement

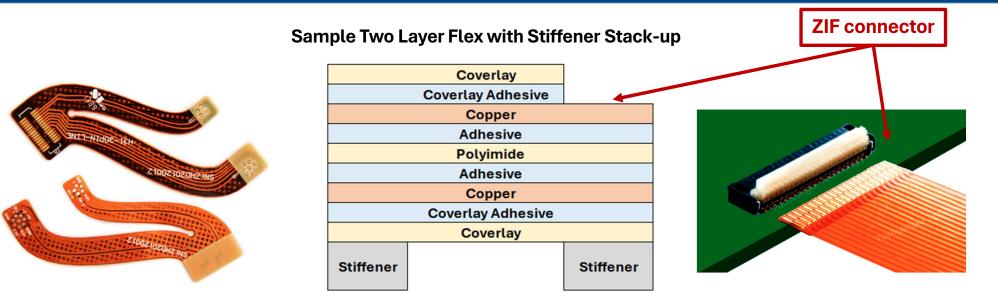
Types of Flex Boards

https://www.multi-circuit-boards.eu/en/products/printed-circuit-boards/flexible-pcb.html https://www.gtpcb.com/sale-40891901-automotive-flexible-pcb-board-with-blue-solder-mask-and-white-silkscreen.html https://www.epectec.com/flex/industries-market-focus/flex-and-rigid-flex-pcbs-for-itar-applications.html https://www.glenair.com/flex-circuit-assemblies/index.htm


IMAGES:

Stack-up - Flex

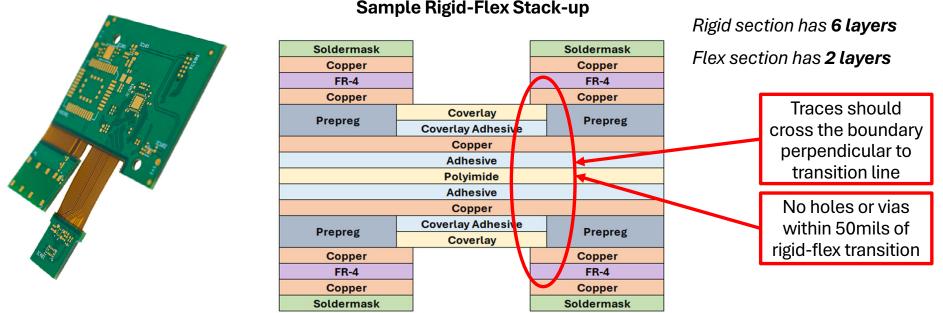
Sample Two Layer Flex Stack-up



Basic Differences from Rigid Stack-up:

- Coverlay and adhesive are used in place of soldermask
- Polyimide (or similar) is used in place of FR4 / pre-preg
 - Can have odd number of layers
- 1/3 oz or 1/2 oz copper weight is most widely used for flexibility

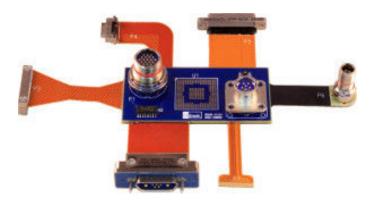
Stack-up – Flex with Stiffener


Most common uses for Stiffener:

- To mount a small number of components on a flex board
- For a ZIF connector (zero insertion force): The coverlay is pulled back exposing the copper over the stiffener. That end is plugged into a connector.

https://www.mouser.com/new/molex/molexeasyon

Stack-up – Rigid-Flex



Sample Rigid-Flex Stack-up

- This is two separate stack-ups put together, both need careful consideration.
 - There is a transition that happens between the flex and rigid materials.

Stack-up - Combination

• This is could contain three or more unique stack-ups. All need careful consideration.

Sample Combination Stack-up

(1			.,	
Soldermask				
Copper				
FR-4				
Copper				
Prepreg		Coverlay		
		Coverlay Adhesive		
	Copper			
Adhesive				
	Polyimide			
		Adhesive		
		Copper		
Prepreg		Coverlay Adhesive		
		Coverlay		
Copper				Stiffener
FR-4				Stilleller
Copper				
Soldermask				

(Rigid-Flex / Flex with Stiffener)

Material Selection

- Each part of a flex stack-up has multiple options based on the needs of the deign.
- Most choices will depend on cost, temperature rating, flexibility among other design constraints.

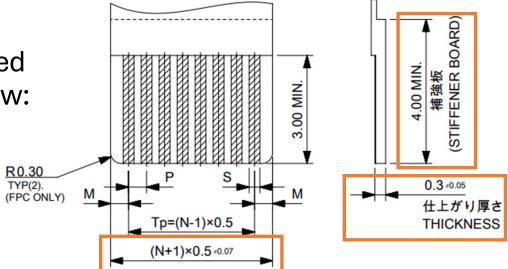
Layer	Options
Dielectrics	Polyimide (Kapton), Polyester
Coverlay/Soldermask	Coverlay + Adhesive, Flexible Soldermask
Stiffener	FR-4, Polyimide (PI), Metal

Coverlay Adhesive			
	Copper		
Adhesive			
	Polyimide		
	Adhesive		
	Copper		
Coverlay Adhesive			
Coverlay			
Stiffener		Stiffener	

Considerations Throughout the Design Process

- Deliverables
- Fabrication Drawing

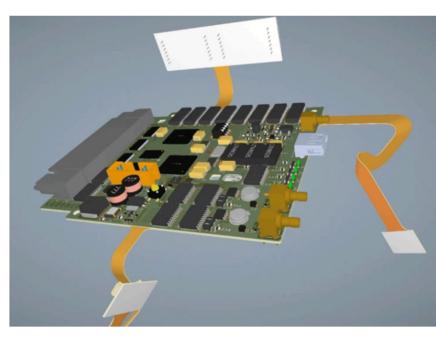
Deliverables


- Extra gerber files required:
 - Outlines of each unique stack-up / zone
 - Stiffener outlines and hole sizes
 - Top & bottom coverlay
- Extra pages or documentation might need to be included in the drill drawing to show:
 - Stiffener thicknesses and dimensions, especially for ZIF connectors (critical for installation)

plex/molex-dot-com/products/automated/en-us/salesdrawingpdf/781/78127/781272210_sd.pdf?inlir

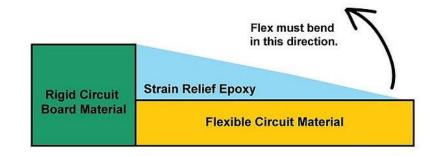
Stiffener installation side

IMAGES


• Bend lines and final assembly

Deliverables

- Many PCB Design programs have advanced 3D model generation, including:
 - Correct thicknesses for each region
 - Bend lines set to correct bend angle
- These 3D models can help verify mechanical feasibility before a board is fabricated
- These models can also allow clearance checking between separate regions of the board when the model is folded.

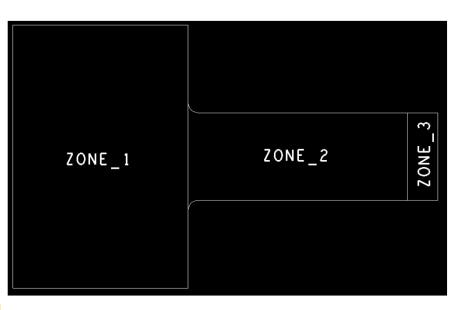


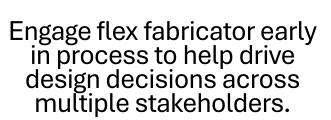
Fabrication Drawing – Notes

- Reference IPC-6013 (flex) instead of or in addition to IPC-6012 (rigid)
- Epoxy might be used at rigid-flex transitions for strain relief
 - This strengthens transition but lowers the bend radius
- Soldermask/coverlay material call outs will likely refer to different IPC Specifications:

IPC Spec	Materials for Flex Applications
IPC-4202	Flexible Base Dielectrics for Use in Flexible Printed Boards
IPC-4203	Cover and Bonding Material for Flexible Printed Circuitry
IPC-4204	Flexible Metal-Clad Dielectrics for Use in Fabrication of Flexible Printed Circuitry

IMAGES: https://blog.epectec.com/the-use-of-strain-relief-with-rigid-flex-printed-circuit-boards https://www.saturnflex.com/technology_hub/ipc_standards.php




Fab Drawing – Stack-ups & Callouts

Make sure to callout all separate stack-ups **and** which regions of the board reference each stack-up.

	STACKUP TABLE				
	Unit = Millimeter				
#	NAME	TYPE	FPC	FLEX	PRIMARY
		SURFACE	0	0	0
	STIFFENER_TOP	MASK	0.2032		
		DIELECTRIC	0.025		
	TOP_SOLDERMASK	MASK			0.02
1	TOP	CONDUCTOR			0.02
		DIELECTRIC	0.0127	0.0127	
		DIELECTRIC	0.025	0.025	0,025
2	LAYER_1	CONDUCTOR	0.018	0.018	0.018
		DIELECTRIC	0.08	0.08	0,08
3	LAYER_2	CONDUCTOR	0.018	0.018	0.018
		DIELECTRIC	0.025	0.025	0.025
		DIELECTRIC	0.0127	0.0127	
4	BOTTOM	CONDUCTOR			0.02
	SOLDERMASK_BOTTOM	MASK			0.02
		SURFACE	0	0	0
	τοτα	L THICKNESS	0,4196	0.1914	0,246
		ZONE NAME	ZONE_3	ZONE_2	ZONE_1

Early Flex Fabricator Involvement

Make sure all necessary departments are involved to ensure the most collaboration.

This allows you to find creative solutions that save time and money.

Electrical	 Material options/requirements Copper thickness Minimum trace/space Controlled impedance calculations
Mechanical	Board thicknessBend radius
Management	 Lead time Fabrication cost Design cost

Main Takeaways

- Determine appropriate "type" for needs of the design
- Understand different material requirements based on "type"
- Make sure documentation clearly calls out stack-ups, regions, and design specifications
- Check in often with all involved departments/collaborators

Thank you!

CONTACT:

Lauren Waslick – Newgrange Design

lauren@newgrangedesign.com