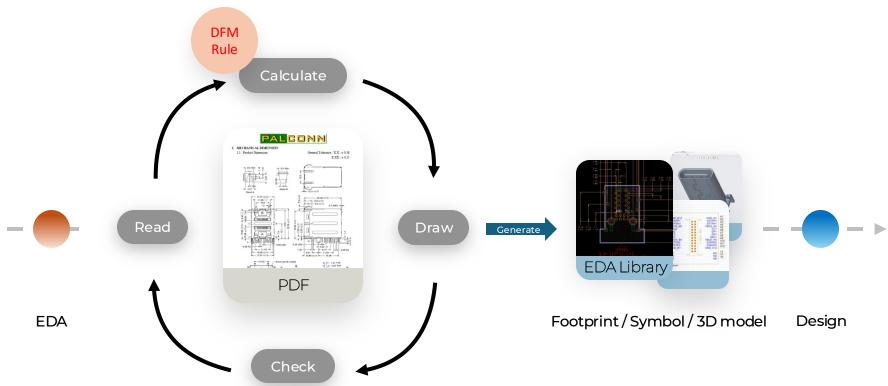
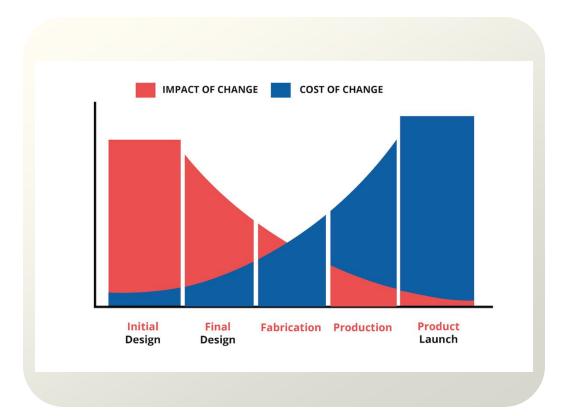


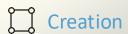
Agenda

- Importance of DFM-aware Library
- Case Studies: Impact of DFM Rules on Manufacturability
- Developing a DFM-aware Library
- Integrating to Virtual Librarian Service
- Q&A



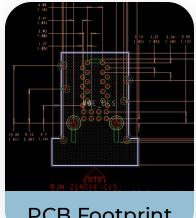
EDA Library in Product Design

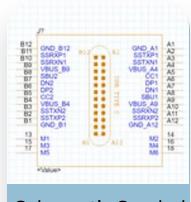

Process of Creating an EDA Library


What Happens When DFM Rules are Overlooked in Early Design Cycles?

"The cost of having to re-work design at a post-design check or even after discovering initial product build is faulty, is much higher than making changes in the initial design to ensure it can be manufactured right-first-time."

Libraries that are Ready-for-Manufacturing




Convert

Mapping

PCB Footprint

Schematic Symbol

3D Model

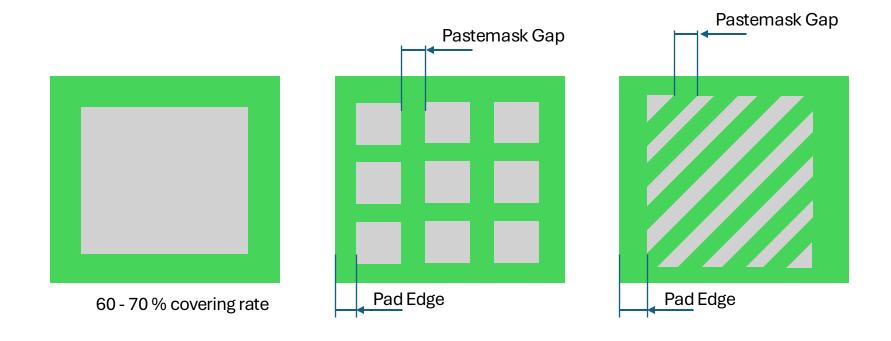
Cadence

Altium

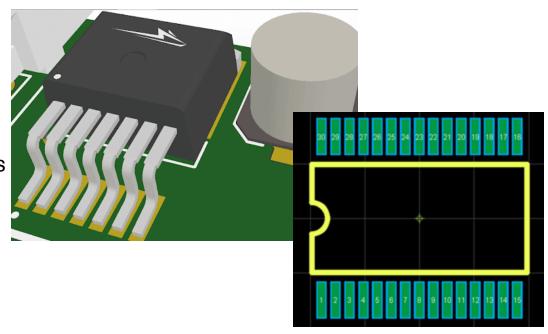
Pads

Covering 100% DFM requirements from contract manufacturers.

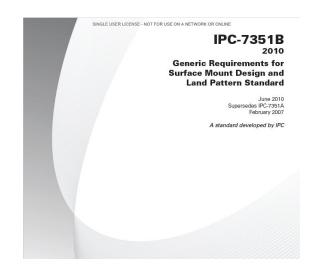
Meeting all requirements from ODM companies.


Impact of DFM Rules on Manufacturability

- Manufacturing condition and capabilities
- Increasing yield and minimize errors
- Engineer's experience



Case 1: Thermal Pad Pastemask Patterns


- IPC 7351
- Vendor Land Pattern
- Lead types and extensions
- Package types

IPC 7351

Table 3-23 TPC-7351 Land Pattern Naming Convention					
Component, Category	Land Pattern Name				
Ball Grid Array's BGA + Pin Qty + C or N + Pitch P BGA w/Dual Pitch BGA + Pin Qty + C or N + Col Pitch X Row Pitch P	+ Ball Columns X Ball Rows Body Length X Body Width X Height				
BGA w/Staggered Pins BGAS + Pin Qty + C or N + Pitch P	+ Dall Columns V Dall Powe - Dody Length V Dody Width V Haight				
BGA Note: The C or N = Collapsing or Non-collapsing Balls	ball Columns & Dan Rows _ Body Dengal & Body Within & Height				
Capacitors, Chip, Array, Concave	CAPCAV + Pitch P + Body Length X Body Width X Height - Pin Qty				
Capacitors, Chip, Array, Flat	CAPCAF + Pitch P + Body Length X Body Width X Height - Pin Qty				
Capacitors, Chip, Non-polarized					
Capacitors, Chip, Polarized					
Capacitors, Chip, Wire Rectangle	CAPCWR + Body Length + Body Width X Height				
Capacitors, Molded, Non-polarized					
Capacitors, Molded, Polarized.	CAPMP + Body Length + Body Width X Height				
Capacitors, Aluminum Electrolytic					
Ceramic Flat Packages	CFP127P + Lead Span Nominal X Height - Pin Qty				
Column Grid Array, Circular Lead	P + Pin Columns X Pin Rows Body Length X Body Width X Height				
Column Grid Array, Square Lead	P + Pin Columns X Pin Rows Body Length X Body Width X Height				
Crystals (2 leads)	XTAL + Body Length X Body Width X Height				
Dual Flat No-lead.					
Diodes, Chip	DIOC + Body Length + Body Width X Height				
Diodes, Molded					
Diodes, MELF	DIOMELF + Body Length + Body Diameter				
Diodes, Side Concave, 2 Pin	DIOSC + Body Length X Body Width X Height - Pin Qty				
Diodes, Side Concave, 4 Pin					
Dual-Inline Package (Butt Mounted)					
Fuses, Molded	FUSM + Body Length + Body Width X Height				

3.1.5.6 Padstack Naming Convention The padstack consists of combinations of letters and numbers that represent the shape, or dimensions, of lands on different layers of printed boards or documentation. The name of the padstack needs to represent all the various combinations. These are used in combination with the land pattern conventions defined herein according to the rules established in the IPC-2220 design series.

The first part of the padstack convention consists of a land shape. There are six basic land shape identifiers. See Figure 3-6 for an example of modifications to the land shape.

Note: All alphabetical characters are "lower case". This helps discriminate numeric values.

3.1.5.6.1 Basic Land Shape Letters

- c = Circular
- s = Square
- r = Rectangle
- b = Oblong
- u = Contour (Irregular Shape) d = D Shape (Square on one end and Circular on the other end)

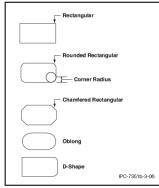
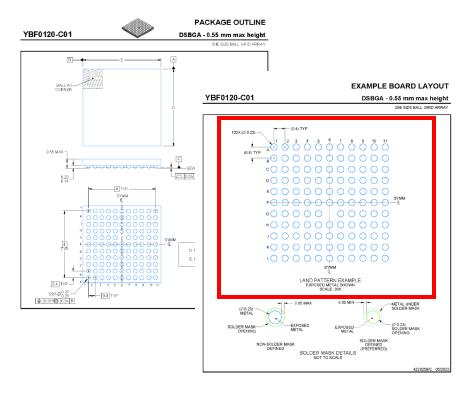
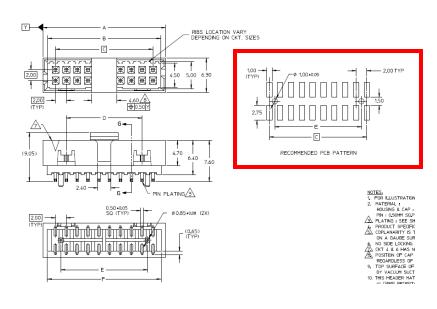
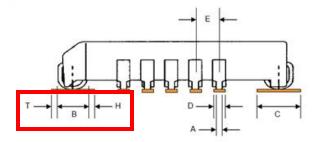




Figure 3-6 Examples of Land Shape Modifiers



Toe / Heel Calculation

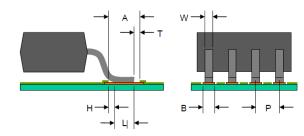
J-LEAD TERMINATION

Copper Pad

Toe Extension (T) X.XX
Heel Extension (H) X.XX

Copper Pad Length (C) = Component Lead Length (B) + Toe Extension (T) + Heel Extension (H)

Copper Pad Width (D) = MAXIMUM Component Lead Width (A) + X.XX


Soldermask Pad

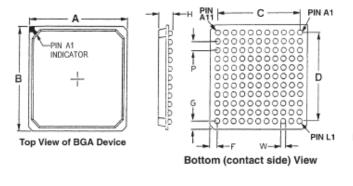
The padstack shall be copper defined.

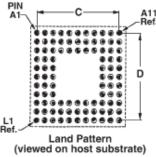
Pastemask Pad

The pastemask pad shall be 1:1 with copper pad.

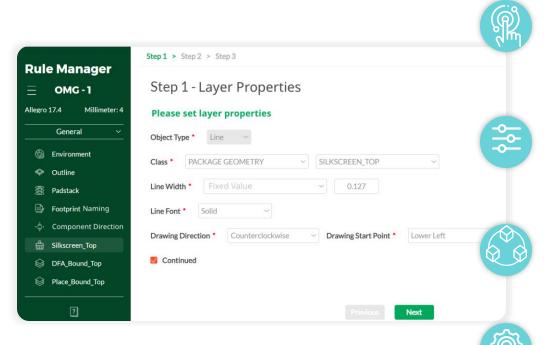
GULL WING TERMINATION

Metal (Copper) Pad


The metal pad width (B) shall be defined per the following table:


Pin Pitch (P)	Toe Extension (T)	Heel Extension (H)	Metal Pad Width (B)
P = 0.50			
0.50 < P <= 0.65			Nominal Lead Width (W) +
0.65 < P <= 0.80			Nominal Lead Width (W) +
0.80 < P <= 1.27			Nominal Lead Width (W) +
1.27 < P <= 1.71			Max. Lead Width (W) +
1.71 < P <= 2.54			Max. Lead Width (W) +
P > 2.54			Max. Lead Width (W) +

Effective Copper Length (A) = MAXIMUM Lead Length (L) + Toe extension (T) + Heel extension (H)



Land Approximation (mm) for Collapsible Solder Balls				
Nominal Ball Diameter	Reduction	Nominal Land Diameter	Land Variation	
0.75	25%	0.55	0.60 - 0.50	
0.65	25%	0.50	0.55 -0.45	
0.60	25%	0.45	0.50 - 0.40	
0.55	25%	0.40	0.50 - 0.40	
0.50	20%	0.40	0.45 - 0.35	
0.45	20%	0.35	0.40 - 0.30	
0.40	20%	0.30	0.35 - 0.25	
0.35	20%	0.28	0.33 -0.23	
0.30	20%	0.25	0.25 - 0.20	
0.25	20%	0.20	0.20 - 0.17	
0.20	15%	0.17	0.20 - 0.14	
0.17	15%	0.15	0.18 - 0.12	
0.15	15%	0.13	0.15 - 0.10	

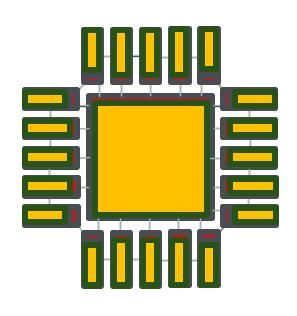
Developing a DFM-Aware Library

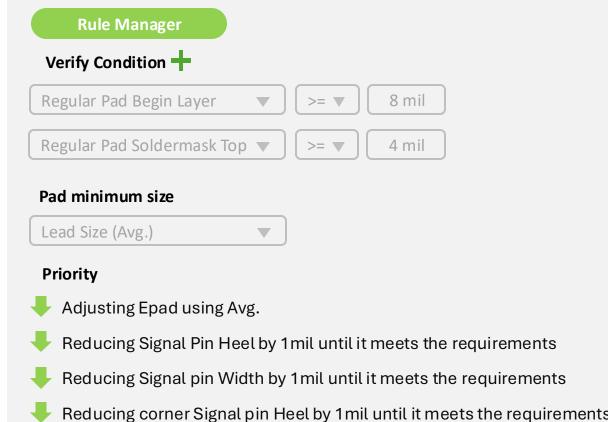
Digitalization

A digital DFM knowledge base linked to library creation process

Customization

Allow users to customize their DFM standards.

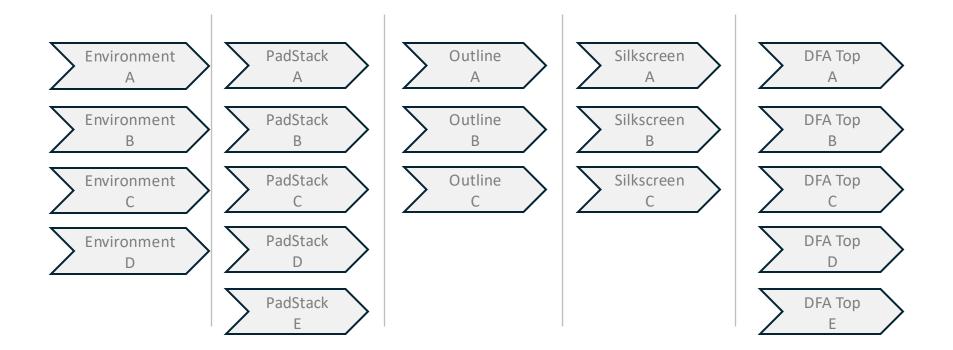

Transferability


Easy to share and transfer the experience.

Management

Trackable tolerance modifications to meet Design consistency.

Programable DFM – Automatically Embedding DFM rules during Library Creation



Modularized DFM Knowledge



Automated DFM Rules Management and Implementation Tool

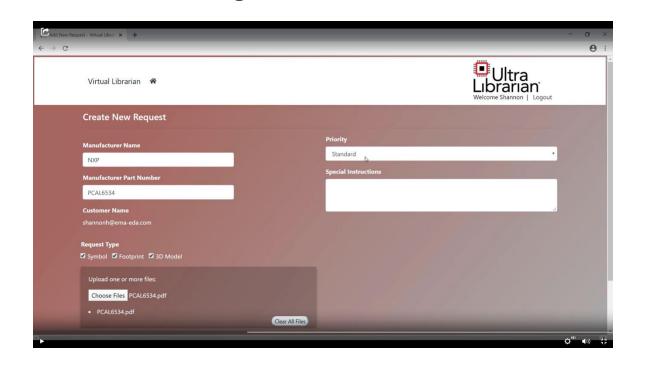
footprintku Al

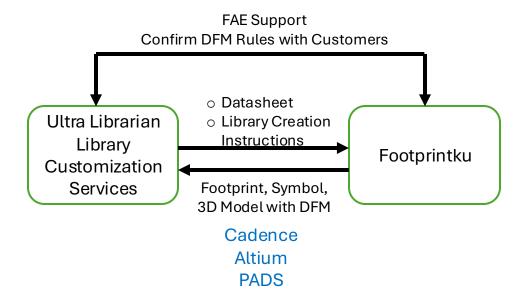
HOW
DOES
VLS
WORK?

CUSTOM DASHBOARD

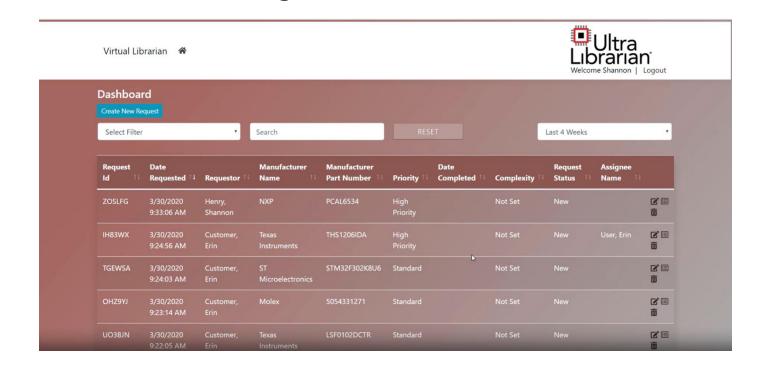
VLS provides a unique, custom dashboard for designers. Each user has a unique login to access both a personal and company-wide parts library.

REQUEST PARTS


All requested parts are created to match your internal standards and requirements. Just provide the datasheets, drawings, or specs and any special requests for your part and we handle the rest.


TURN AROUND TIME

All parts are created within two business days, and an email will be sent to alert the requester when it's


PARTS BUILT TO YOUR STANDARDS, ON YOUR TIMELINE

INTERNAL WORKFLOW

PARTS BUILT TO YOUR STANDARDS, ON YOUR TIMELINE

Librarian Service Onboarding

- Establish Symbol creation guidelines
- Agree on turn around time, Prioritization
- Setup part request and fulfillment process,
 - Virtual Librarian Service Portal (Recommended)
 - Email alias and file transfer area
- Monthly checkpoint
 - Dashboard review
 - Invoicing approval

Julie Liu, Sanjay Keswani