cādence[®]

Concurrent PCB Design and Analysis with Sigrity Aurora

0

Jerry Long Senior Applications Engineer EMA Design Automation

19/11

nin minimu

Modern Designs Present Series of

Complex Electrical Challenges

11

Which If Not Caught Lead to

Missed Schedules

Re-Spins

Field Failures

Increased Costs

0\$

00 And these issues are often relational one affecting the other

The Allegro Constraint-Driven Flow (Powered by Sigrity Technology)

SI/PI - Aurora

 Aurora provides basic signal and power integrity analysis, integrated directly into the Allegro front-to-back design environment. It enables SI and PI issues to be quickly identified and fixed in-design or Optimized idesign. Thus minimizing iterative analyze / fix / re-verify loops and reducing the overall design cycle.

cādence°

Aurora Primary Advantages

- Integration into the Allegro design flow with visions minimizes analysis / layout iterations and accelerates time-to-market
- Access to Sigrity analysis technology is brought to the design engineer and layout designer's desktop, making analysis results actionable with real-time design edits
- IR drop analysis by the non-expert, enabling real-time copper edits to address IR drop in-design
- Topology Explorer can be used pre-design to explore solution space and derive constraints to drive Allegro layout during exploration phase of the design
- Topology extraction can provide the electrical view of a signal topology for what-if analysis and troubleshooting

Aurora Analysis Workflows

cadence®

Aurora Demonstration

un mumu

WITTE

0

mannan

Impedance Workflow

- 1. Select the nets (or run the whole PCB) and run the analysis
- 2. Use the table to find the nets with the worst impedance discontinuities
- 3. Find problems, fix problems, and verify the solution directly on the Allegro design canvas

	A WORK				Impedance (Ohr	m)		Impedance Lengt	h (%)	
	Net Name	• Vias	No Ref	Max	Min	Тур	Max	Min	Тур	Leng
		▼ ×	▼ ×	▼ ×	▼ ×	▼ ×	v *	V	▼ ×	▼ ×
	PP_A<0>	4	0	43.90	40.10	40.10	1.11	73.42	73.42	4953.8350
	PP_A<1>	4	0	66.70	40.10	40.20	0.66	18.07	74.68	4952.7540
	PP_A<2>	4	0	66.70	40.10	40.20	0.38	18.23	68.63	4957.2060
	PP_A<3>	4		40.60	40.10	40.20	5.13	18.14	76.73	4956.2510
	PP_A<4>	4	0	66.70	40.10	40.20	1.46	18.19	65.33	4955.0500
	PP_A<5>	4	0	66.70	40.10	40.20	1.12	18.05	72.00	4951.9080
	PP_A<6>	4	0	66.70	40.10	40.20	1.51	18.14	75.11	4956.6930
I	PP_A<7>	4	0	66.70	40.10	40.20	0.39	10.05	71.57	4951.7500
		4	0	66.70	40.10	40.20	1.50	19.05	73.63	4955.0540
		4	0	40.60	40.10	40.20	9.50	19.14	72.02	4954.7210
	PP_A<10>	4	0	66.70	40.10	40.20	3.47	19.10	67.11	4951.2000
		4	0	66.70	40.10	40.20	0.38	18.06	76.00	4954 4930
		4	0	66.70	40.10	40.20	1.82	18 14	67.92	4952 7320
	PP ACT N			40.60	40.10	40.20	0.57	18.15	81.29	4923.6320
	PP BA<0>	4	0	40.60	40.20	40.20	5.09	94.91	94.91	4957,2170
	PP BG1			40.60	40.10	40.20	0.57	18.21	81.23	4924,4640
	PP CAL O		0	49.60	40.60	48.00	6.39	1.67	91.94	1666.9170
	PP_CAS_N				40.10	40.20	7.24		74.65	4956.3440
	PP_CKE0		0	40.60	40.10	40.10	7.80	92.20	92.20	4055.1050
ļ l	PP_CKE1			66.70	40.20	40.20	4.18	84.86	84.86	4056.4760
	PP_CKE2		0	40.60	40.10	40.10	7.59	92.41	92.41	4957.2240

3a

cādence

Design <u>https://resources.pcb.cadence.com/feature-videos/impedance-analysis-feature-video</u> 8 © 2022 EMA Design Automation, Inc.

alysis Wo

Analysis Setup

Analysis M

Analysis

Save An

Analysis Res

View Mo

Net Base Single En

3c

Coupling Workflow

3a

Strong

coupling

- Select the nets (or run the whole PCB) 1. and run the analysis
- Use the table to find the nets with the 2. highest coupling coefficient
- Find problems, fix problems, and verify 3. the solution directly on the Allegro design canvas

			()) 4)			-16-	
kflows –	e x		111 1	N 2			
	Simulation Table Worst Case Mode						-
	Summary Table	×					
Morkflow	- W		Max Coupling		% Leng	th with Coupling Coef	
WORKHOW	Net Name	Aggressor Net Nam	e Coef (%)	Length	(%) > 5%	2%~5%	Coupling Index (
	*			▼ ×			
	PP_A<0>	PP_A<1>	14.80	0.95	16.55	2.57	7706.73
odes:	PP_A<1>	PP_A<0>	14.80	0.95	4.39	1.94	3362.08
roup 🔻	PP_A<2>	PP_A<0>		14.04			
	PP_A<3>	PP_CKE0	15.70	4.57	4.57	12.07	6203.56
	PP_A<4>	PP_CS2_N		1.14			3096.97
	PP_A<5>	PP_CS1_N	22.80	0.40	14.44	0.00	4570.14
	PP_A<6>	PP_ODT1	25.40				
	PP_A<7>		0.00	0.00	0.00	0.00	0.00
	PP_A<8>		0.00	0.00	0.00		
	PP_A<9>	PP_ODT2	24.40	0.35	0.54	0.00	693.04
lvsis Results	PP_A<10>	PP_CLK3_N		18.69	18.69	0.00	17671.22
	PP_A<11>		0.00	0.00	0.00	0.00	0.00
lts	PP_A<12>	PP_CS2_N	13.40	0.30	0.99		2097.70
	PP_A<13>	PP_RAS_N	3.70	2.07	0.00	4.96	708.15
	PP_ACT_N	PP_CLK2_N	3.90	4.73	0.00		996.15
s:	PP_BA<0>	PP_CLK2	13.30	0.65	0.65	0.00	425.39
	PP_BA<1>	PP_PARITY		0.27			906.27
	PP_BG0	PP_CKE2	15.90	2.40	2.40	6.40	3421.28
	PP_BG1	PP_CKE2		5.33			4884.29
	PP_CAS_N		0.00	0.00	0.00	0.00	0.00

3b

...

https://resources.pcb.cadence.com/feature-videos/coupling-analysis-feature-video © 2022 EMA Design Automation, Inc. **EIVIA** Automation[®]

Return Path Workflow

- 1. Select devices and nets of interest and run the return path simulation
- 2. Look for worst return path quality (loop inductance) factor (1.0 is ideal)
- 3. Find problems, fix problems, and verify the solution directly on the Allegro design canvas

	15	211	1111	X X	an an	
_ & × Simulation T	able					
	×					
	Re	turn Path				
▼ Net/Xnet N	Quality Factor	Vision	Start Signal Pin	Start Return Pin	End Signal Pin	End Return Pin
*	* *		* 🔻	* 🔻	* 🔻	*
PP_CKE0	2.070	Restart Simulation	U2.AA8	U2.Y11	DDR4_DIMM1.59	DDR4_DIMM1.56
PP_RESETO_	N 1.799	Start Simulation	U2.AB8	U2.Y11	DDR4_DIMM1.57	DDR4_DIMM1.56
PP_DQ<15	1.758	Restart Simulation	U2.V19	U2.U20	DDR4_DIMM1.174	DDR4_DIMM1.173
PP_DQ9_D	1.719	Start Simulation	U2.W16	U2.U20	DDR4_DIMM1.169	DDR4_DIMM1.170
PP_DQ<7>	1.689	Start Simulation	U2.AA19	U2.Y21	DDR4_DIMM1.152	DDR4_DIMM1.151
PP_DQ<11:	1.668	Start Simulation	U2.V16	U2.P17	DDR4_DIMM1.176	DDR4_DIMM1.177
PP_A<13>	1.612	Start Simulation	U2.T8	U2.P9	DDR4_DIMM1.229	DDR4_DIMM1.231
PP_DQ20_D	1.595	Start Simulation	U2.AB4	U2.AB1	DDR4_DIMM1.105	DDR4_DIMM1.106
PP_A<3>	1.591	Start Simulation	U2.T13	U2.U12	DDR4_DIMM1.70	DDR4_DIMM1.56
PP_DQ<1>	1.574	Start Simulation	U2.W17	U2.U20	DDR4_DIMM1.147	DDR4_DIMM1.146
PP_A<11>	1.569	Start Simulation	U2.T14	U2.P15	DDR4_DIMM1.207	DDR4_DIMM1.199
PP_CKE1	1.564	Start Simulation	U2.V8	U2.Y11	DDR4_DIMM1.200	DDR4_DIMM1.199
PP_DQ0_D	1.557	Start Simulation	U2.W18	U2.U20	DDR4_DIMM1.4	DDR4_DIMM1.3
PP_DQ<10>	1.551	Start Simulation	U2.V17	U2.U20	DDR4_DIMM1.33	DDR4_DIMM1.32
PP DO<14	1.537	Start Simulation	U2.W19	112.121	DDR4 DIMM1.31	DDR4 DIMM1.30

3b

alysis Workfl

Return Path

Reference N

alysis

Save Analy nalvsis Result

Vision Net

Vision Laye

3C

Design <u>https://resources.pcb.cadence.com/feature-videos/return-path-analysis-feature-video</u> 10 © 2022 EMA Design Automation, Inc.

cādence[®]

IR Drop Workflow

Load PowerTree and Analyze 1.

3a

(1)

- Use the table to find the power nets with the 2. worst voltage drop
- Find problems, fix problems, and verify the 3. solution directly on the Allegro design canvas

Summary Table				11	/	: X	ی 👻	<u> </u>		
		-							Toler	ance
5	ink Name *	Nominal Voltage (V)	Actual Voltage (V)	IR Drop (mV)	P/F Status	Margin (mV)	Model	Nominal Current (A)	Upper (+%)	Lower (-%
*		*	*	* 🔻	* 🔻	* 🔻	* 🔻	*	* 🔻	
SINK_U25_P3V3_	STBY_GND	3.3	3.01015	289.851		-124.851	Unequal Current	0.1	5	
SINK_U26_P5V_S	TBY_GND	5	4.85283	147.171	PASS	102.829	Unequal Current	0.2	5	5
SINK_U28_P3V3_	STBY_GND	3.3	3.00916	290.838		-125.838	Unequal Current			
SINK_U28_P5V_S	TBY_GND		4.92478	75.224		174.776	Unequal Current	0.2		
SINK_U30_P1V5_	PCH_GND		1.48235			57.348	Unequal Current			
SINK_U30_P3V3_	STBY_GND	3.3	3.00252	297.481		-132.481	Unequal Current	0.9	5	5
SINK_U32_P3V3_	STBY_GND	3.3	3.0104	289.604		-124.604	Unequal Current			
SINK_U34_P3V3_	STBY_GND	3.3	3.01021	289.792		-124.792	Unequal Current	0.1	5	5
SINK_U35_P3V3_	STBY_GND	3.3	3.0103	289.695		-124.695	Unequal Current			
SINK_U37_P12V_	STBY_CONN_GND	12	11.9372	62.85	PASS	537.15	Unequal Current	0.1	5	5
SINK_U38_P3V3_	STBY_GND	3.3	3.01094	289.06		-124.06	Unequal Current			
SINK_U40_P3V3_	STBY_GND	3.3	3.01089	289.11		-124.11	Unequal Current	1	5	5
SINK U41 P3V3	STRY GND	33	3,00316	296.838		-131.838	Unequal Current	0.1	5	

https://resources.pcb.cadence.com/feature-videos/ir-drop-analysis-feature-video Design © 2022 EMA Design Automation, Inc. **Automation**[®]

nalysis Workflo

IR Drop Work alvsis Set

Setup Modes

PCIe_DualDim

Save Analysis

IR Drop

Enable Log Sca Enable Vertical Rang

nalysi

cādence°

2.87e+0

25e+0

44e 400

.37e+00

Topology Extraction

- Integrated workflow in Aurora
- Extract single-ended and differential signals into Topology Explorer
- Explore what-if scenarios and develop constraints

Analysis Workflows	
Save Workflow Settings	8 8/// / /=
Load Workflow Settings	
Topology Extraction Workflow	
Component Model Setup	
Set up Default Models	
Use defaults for missing models	
Manage Libraries	
Launch Analysis Model Manager	
Assign Models	
Analysis Setup	
✓ Select Nets	
View 3D Geometry	
Analysis	

cādence

Reflection Workflow

Automation[®]

- 1. Select nets of interest and analyze. IBIS models must be assigned to nets from the AMM library or use defaults
- 2. Use the table to find the signals with the worst signal quality (e.g. excessive ring back)
- 3. Find problems, fix problems, and verify the solution directly on the Allegro design canvas

orkflows _ ි	×	(1	81 8/1	/ / /-		1	
	A A STREET	- 1 6 8		11 . 1.	•		
				0/			
ion Workflow	Simulation Table						_ 8
nt Model Setup	· · · · · · · · · · · · · · · · · · ·	Focus Data: Ring Back Man	gin High ▼				
	(X)Net	Ring Back Margin High	Receiver	Driver	Stimulus/Parameters	High	Low
	*	▼ * ``	* *		• * •		
faults for missing models	► PP_DQ9_D	N/A	cds_bi_gen_3p3v_40_10pf DDR4_DI	cds_bi_gen_3p3v_40_10pf U2 W16	0101, 0.4 Gbps, 0	N/A N//	
	▶ PP_DQ<6>		cds_bi_gen_3p3v_40_10pf DDR4_DI	cds_bi_gen_3p3v_40_10pf DDR4_DIM.	. 0101, 0.4 Gbps, 0	0.43 V -0.1	18 V N/
	▶ PP_DQ<7>		cds_bi_gen_3p3v_40_10pf DDR4_DI	cds_bi_gen_3p3v_40_10pf DDR4_DIM.	. 0101, 0.4 Gbps, 0		
	▶ PP_DQ<8>		cds_bi_gen_3p3v_40_10pf DDR4_DI	cds_bi_gen_3p3v_40_10pf DDR4_DIM.	. 0101, 0.4 Gbps, 0	0.40 V 0.8	3 V N/
	▶ PP_DQ<10>		cds_bi_gen_3p3v_40_10pf DDR4_DI	cds_bi_gen_3p3v_40_10pf DDR4_DIM.	. 0101, 0.4 Gbps, 0	0.40 V 0.8∙	
	PP_DQ<11>		cds_bi_gen_3p3v_40_10pf DDR4_DI	cds_bi_gen_3p3v_40_10pf DDR4_DIM.	. 0101, 0.4 Gbps, 0	0.40 V 0.8	5 V N/4
tup	PP_DQ<12>		cds_bi_gen_3p3v_40_10pf DDR4_DI	cds_bi_gen_3p3v_40_10pf DDR4_DIM.	. 0101, 0.4 Gbps, 0	0.40 V 0.8	
	▶ PP_DQ<13>		cds_bi_gen_3p3v_40_10pf DDR4_DI	cds_bi_gen_3p3v_40_10pf DDR4_DIM.	. 0101, 0.4 Gbps, 0	0.40 V 0.8	5 V N/
	PP_DQ<14>		cds_bi_gen_3p3v_40_10pf DDR4_DI	cds_bi_gen_3p3v_40_10pf DDR4_DIM.	. 0101, 0.4 Gbps, 0	0.40 V 0.8	5 V N//
	PP_DQ<15>		cds_bi_gen_3p3v_40_10pf DDR4_DI	cds_bi_gen_3p3v_40_10pf DDR4_DIM.	. 0101, 0.4 Gbps, 0	0.40 V 0.8	5 V N/
	PP_DQ<16>		cds_bi_gen_3p3v_40_10pf DDR4_DI	cds_bi_gen_3p3v_40_10pf DDR4_DIM.	. 0101, 0.4 Gbps, 0		
	▶ PP_DQ<17>		cds_bi_gen_3p3v_40_10pf DDR4_DI	cds_bi_gen_3p3v_40_10pf DDR4_DIM.	. 0101, 0.4 Gbps, 0	0.41 V 0.7	ev N/
	▶ PP_DQ<18>	0.40 V	cds_bi_gen_3p3v_40_10pf DDR4_DI	cds_bi_gen_3p3v_40_10pf DDR4_DIM.	. 0101, 0.4 Gbps, 0	0.40 V 0.8	2 V N//
halysis Results							
oculto							

© 2022 EMA Design Automation, Inc.

View Reflection Tables View Reflection Visions

cādence"

Crosstalk Workflow

- 1. Select nets of interest and analyze. IBIS models must be assigned to nets from the AMM library or use defaults
- 2. Use the table to find the signals with the worst crosstalk and view aggressors
- 3. Find problems, fix problems, and verify the solution directly on the Allegro design canvas

			$\overline{-}$	81 8111	/ /=		
brkflows _ ਰੋ ×					1 1 1		
Vorkflow Settings	All Neighbor Each	Neighbor					- ° ×
Workflow Settings		T _x					
alk Workflow	Victim DP/(X)Net	t •	Result/Waveform Link		Victim Receiver		Simulation Type
nt Model Setup	·	▼ 2				*	
	▼ PP_A<0>			CDS_IN_GEN_2P5V_10PF_NOTERN	I DDR4_DIMM2 78	ALL; HS; ODD; TYP	
Default Models				CDS_IN_GEN_2P5V_10PF_NOTERN	I DDR4_DIMM2 78	ALL; HS; EVEN; TYP	
defaults for missing models				CDS_IN_GEN_2P5V_10PF_NOTERN	/ DDR4_DIMM2 78	ALL; HS; ODD; TYP	
ge Libraries				CDS_IN_GEN_2P5V_10PF_NOTERN	A DDR4_DIMM2 78	ALL; LS; EVEN; TYP	
, h Analysis Model Manager	N 00 A (1)			CDS_IN_GEN_2P5V_10PF_NOTERM	A DDR4_DIMM2 78	ALL; LS; ODD; TYP	
Models	► PP_A<1>		Simulation Table				
etup	▶ PP_A<3>		All Neighbor Each N	eighbor			
Nets	PP_A<4>		Summary Table	Y T			
Analysis Options	- ngriss	10.0					
Analysis Options			Victim DP/(X)Ne •	Aggressor DP/(X)Net	tesult/Waveform Lin	Victim Receiver	Simulation Type
nalysis			*	*	*	*	*
Analysis Results			▶ PP_A<0>	PP_A<2>		CDS_IN_GEN_2P5	EACH; HS; ODD; TYP
esults			▼ PP_A<2>	PP_A<0>		CDS_IN_GEN_2P5	EACH; HS; ODD; TY
Analysis Results		20		PP A<6>	1.1 mV	CDS IN GEN 2P5	EACH: HS: ODD: TYP
Crosstalk Tables							
Crosstalk Visions				PP_A<0>		CDS_IN_GEN_2P5	EACH; HS; ODD; TYP
						CDS IN GEN 2P5	

3a

Design Automation* https://resources.pcb.cadence.com/feature-videos/crosstalk-analysis-feature-videos/ 14 © 2022 EMA Design Automation, Inc.

cādence[®]

Full Collaboration Use Model: Concurrent Design and Analysis

- Concurrent design and SI / PI Analysis to improve team efficiency
 - Previously, in-cycle analysis has typically occurred on a static 'saved off' design version...very difficult to merge in changes
 - Now, engineers can lock a finished section and analyze
 - Engineers can perform what-if changes in the local analyzed area without impacting rest of design
 - Allows real-time analysis on the current design...embed communication so it's always accurate and timely

Real-time collaboration between physical design and electrical analysis (Team Design)

cādence

Layout Workbench

Unified Electrical Analysis Platform

UNIQUE TO SIGRITY

mil

EMA Design Automation*

Why Sigrity Complete Electrical Analysis Solution

Get PI/SI Right the First Time with Sigrity

Meet Delivery Schedules

Prevent Respins

Ensure Reliability

Optimize for Cost, Perf, Size

Sigrity Electronics Workbench

Hardware Correlated Accuracy 10x Performance Multi-CAD Support

Thank You For Joining Us

• Call us today!

 To find out about the latest in new product developments, training, educational opportunities, and services offered call EMA, a Cadence Channel Partner reseller, call at 877.362.3321 or visit us online at <u>www.ema-eda.com</u>

Technical Support:

- Telephone: 585-334-6001 Option 5
- E-mail: techsupport@ema-eda.com
- My information Jerry Long:
 - Telephone: 512 250-2191
 - E-mail: jerryl@ema-eda.com

